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Control problems are analyzed for systems described by second-order differen-
tial equations of hyperbolic type,set in the form of a connected multidimen~
sional Bolza problem of the calculus of variations, Necessary stationarity con~
ditions have been obtained, It is shown that to the optimal solutions there can
correspond Lagrange multipliers which can have discontinuities on the charac~
teristic hypersurfaces inside the domain,

Optimization problems for two ~dimensional hyperbolic equations wereexa~
mined earlier in [1— 4], Discontinuities in the Lagrange multipliers were first
obtained when solving variational problems of gas dynamics [5].

1, Statement of the problem, Let us consider the partial differential equa-
tion and the relations

2z
L(z) = gt Z‘ %i G B 3x6x +Z¢1

i, j=1

= (%4 2, U, 2) (LD

¥ (@ey 2, u) =0, i=1,...,m<p (L.2)

U = (uy (T, 7), ..., Up (T4, z)), @y = a;; (z), a; = a; (z)

given in an ( p ~- { )-dimensional domain W = Q X [, T}. Here Q is a finite
connected domain of variation of the variables = = (x4, . . ., Z,), 2 (Z,, Z) is a
piecewise-smooth function of the variables z,and z, subject to definition, & is the p-
dimensional vector of piecewise-continuous controls, The matrix composed from the co-
efficients a;; is positive definite and symmetric at each point & . From thesesta-
tements it follows that Eq. (1. 1) is of hyperbolic type in W . The inijtial and boundary
conditions

dz
zL.nt’ = ¢ (2), Ty nyeto = g (x) (1.3)
a
'&%‘lszg(s’ v, 2]s) (1.4)

P (S, 2) =0, i=1l...m<g v=(9,(S), ... 2 (S) (1.5

are taken as specified. Here J§ is a cylindrical hypersurface formed by an (n — 1)~
dimensional surface I', moving along the coordinate x,, dz / AN is the derivative
with respect to the normal to §, v is a g ~dimensional vector of piecewise-continuous
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controls specified on S, The conditions

Xi (I‘? z{rw zITu LR ZII‘T)"’—"'—O, i=1,...,me<r+41 (1. 6)

can be specified at the final instant o == I', Here I'; are ( n — 1 )~dimensional sur-
faces lying in the hypersurface Q, I', is the surface bounding Q, T' are generalized
coordinates yielding all T'; (i = 0, 1, . . ., 7). As an example we can cite the twocir-
cumferences ; = ry COS @, %3 = ry 8in @ and 2; = ry €08 @, 2, = 73 8in @, Iy-
ing in the ( x, 3 )-plane, Equalities (1, 6) are to be understood as the connections bg-
tween the values zfry for one and the same values of coordinates I,

We pose the following optimization problem: among the piecewise-continuous con-
trols w and v satisfying relations (1, 2) and (1.5) and the piecewise-smooth functions
z (24, ) satisfying Eq, (1. 1), initial conditions (1. 3), boundary conditions (1, 4), and also
the end conditions (1, 6), find those which minimize the functional

I =\ fo(20, 2,4, 2) dz dx+§§0 (S, v,2]s)dS -+ W
w

§ Qo [x, z(T, ), —é% (T, x)] dx -+ SXO (T zlep 2lrg - -+ 2[p,) AT

The coefficients a;; and @, and the functions f, fo, ¥y, @y, @0, s, &, £o» X 2nd %,
are assumed to be continuous and to have continuous partial derivatives in all their argu-
ments up to third order, inclusively, in the domain being examined.The function @, is

assumed continuous together with all its third partial derivatives in the subdomains of
Q delineated by the surfaces I'y, Ty, . . ., T},.

2, Necessary stationary conditions, The problem formulated is an(n+1)-
dimensional Bolza problem of the calculus of variations, For it we can prove a necessary
condition for the stationarity of the functional

o =0 (2.1)
in which 67 is the first variation of the functional

1= (ML) + Hidoydz + (zn [s 4+ B)dS + (2.2)
w 3

S{Vx (2 (f0, T) — 1 (®)] + V3 (2, (b0, @) — P2 (2)] +
]
oo}dz+ § xdl, H =fo— M+ Jw¥s

h i=

k1131 g
h = go~— Vg +‘§ %W, X = Yo +‘§ i

where A (2o, 2), Ri (Zo, %), %1 (5), v (5}, vi (£) and p; (T) are undetermined
Lagrange multipliers. When computing the first variation 81 we assume that the whole
domain W consists of a finite number of elementary domains W; bounded by a piece~
wise-smooth hypersurface §; whose smooth parts S;; are separated by (2 — 1 )-dimen-
sional surfaces C;;. Some parts of the hypersurfaces §; can coincide with the bounda-
ries of domain W: § and Q (when z, = f, or %o, = T'), while some C;; will co-
incide with surfaces I';, In order not to obscure the calculations with indices showing to
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which specific elementary domains the quantities belong, we compute the first variation

67 in some elementary domain w which has a boundary s and (# — 1 )-dimensional

surfaces €, We assume that the elementary domain w is bounded by the hypersurfaces
Yo = Yo (2o, ) = D (2.3)

where [ is some arbitrary constant, Naturally, in the general case the form of (2, 3)is
different from the smooth segments of boundary s.
The first variation of functional I in domain w is

51, =g[xL(a )+ 26z 4 ——éu]dxodx +§[hL(z)+H]6yods (2.4)

w =1
The first variations of the last three terms in (2, 2), given on the boundaries of W, ghould
be joined on the expression (2, 4) (see below). We transform (2, 4) by applying the follow-
ing transformation to the terms AL (8z) :

028z i} 00z a i
b sty = (M )~ T [y o) 02 +

i3 2 a
A 62, ?\.ai -;,’?1— = _525_1 (Kaiﬁz) — 55: ()va,-) 8z
Then we obtain

81, = S{[M(h) 4 -‘98%]6 —|—Z——6u}dxodx +  (2.5)

i=1

36z oA 8z
{3 82 — Z [pasen -~
s

i, j=1

a (a ”;v) "
Ooj = — 62] + Z Ma;0q:6z 4- foayo} ds
i =
o\ Pleh
= %ij
MM = Er% Z 9z, 0z,
1, §=1
Here q,; are the direction cosines of the normal to hypersurface (2, 3), determined in
the Appendix, Besides those written outin(2.5) there are no terms in the expression for 81,
depending on the iuterior points of the elementary domain w. Therefore, following the
formalism of the calculus of variations, it is necessary to set the conditions
M\ +06H/dz =0 (2. 6)
aH/aui = 0, l=191p (207)
which must be satisfied at each interior point of each elementary domain,

2, The Welerstrass — Erdmann conditions, To obtain the Weierstrass—

Erdmann conditions on the boundary hypersurfaces s of the elementary domains we ana-
lyze the remainder terms in the first variation /. To do this we pass in: §/ to thenew
curvilinear orthogonal coordinates

Yo = Yo (x01 x)r Y1 = (xo, x)a cevy Yn = Un (x01 x) (3.1)
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9 En W; 0 i=0,1 n
——— SHET AT s =0, .y
63:{ - 63:i Byj
Using (A.4),(A.5), (A.7) and (A, 10) from the Appendix, we obtain
a
1, = { (b 5=+ E by 9o — by i 82 — (3.2)

B
n

o : il
3\ gbe - ehoe - doks foﬁyo) BB R
=1

n
, da, ay
(dy =dyy...dY, ¢ = Z 6:;] 6x0)
i, j==1

We transform the second term in the integrand in (3, 2) by using the formula

) b, Adz d bk by a8z
() = 7 6z +
dy, \ RR,.. . R, K\ BoRy.. R, RRy,...R 9y,

Then the first variation (3. 2) becomes

81, = {[bur 5o +F(;V)6Z+f06§!03§“§£——_'+ (3.3)

Adz

M, ..Rndc

e

bk cos (N, yx) 4

k=1
1
ah i 823;0 660
F(x)zmbﬁa—%—_z;mmu b+ b+
==1

by

—— A
Ro Pok

2eo'h 4 doh + -

where 1 / p,, are the quantities defined by formulas (A, 9) in the Appendix, C is the
( » —1 )-dimensional surface on which the smoothness of the hypersurface s is disrup-
ted and N is the normal to surface (, lying in the tangent hyperplane to s.

We transform the variations Gaz/ayo,(Sz and 6z |¢ occurring in relation (3.3) by the

formulas 3z 82
- 8.4
§ — 3310 A 7o a?; rvacy ﬁyg, §
dz ¢ d
62‘0 = AZ‘C'— ‘ayiﬁayo e ~'5;,—6N

where Az. and Adz / 0y, are variations on surface s with due regard to its mobility
away from C and Az|c is the variation with due regard to the mobility on surface C.
Making use of equahtxes (3. 4}, we transform §7,, to the form n

{ff,—tzAZbk

9% [82y0 az Z 2‘/:: o Z be, 0%
Yo 9y, + A dxwy2 + drg? 0y, A i ay 3711

{3.5)
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?»251; -+ kzigk 3—‘-“’”}?(}“} 3us ]Gé’o} RR:EV E, -+

il b7) d
ZbkCOS(N, yk)K(AZICM*BTEEGyo—T]%*aN)—I%—RI—.?{j“ﬁ:

C k=1

in which 9%z / dy,? is substituted from formula (A, 10) of the Appendix,

We go on to establish the Weierstrass— Erdmann conditions on the hypersurfaces s #nd
on the ( » —1 )~dimensional surfaces . We shall esamine s and C lying inside W;
therefore, s serves as the boundary oftwa elementary domains, We denote the quantities
inthe elementary domain being examined by the index plus and 'in a boundary elementary
domain by the index minus, We note as well that b, = 0 is the differential equation
determining the characteristic surfaces of Eqs, (1. 1) and (2. 6).

Let us obtain first of all the Weierstrass— Erdmann conditions on hypersurfaces s which
are not characteristic ones, When passing through these hypersurfaces the quantities z
and gz / 0y, remain continuous, therefore

ozt _?i Azt e T o= * = Sy = 3.6
A~% = A = A Fk Azt = Az" = Az, Oy, v~ = 8ys  (3.6)
Singling out in {3, 5) the terms containing Adz/dy, and equating them to zero, we

obtain byAt — BA~ = 0, b, 5= 0, therefore

At = A-on s 3.7
Singling out in (3, 5) the terms depending on Az, we find
F (7&*) == F{A7) {3.8)

The multiplier 3 is continuous on hypersurfaces s , therefore, the derivatives A / 0y
are continuous and from equality (3. 8) follows

OA* [/ dyy = A~/ Oy, on 8 3.9
Equating the coefficients of variation 8y, to zero and allowing for (3.7) and (3. 9), we
obtain H+ = H-on s {3, 10}

Let us now obtain the Weierstrass — Erdmann conditions on hypersurfaces s whichare
characteristic, On characteristic hypersurfaces the derivative dz / dy, can have dis-
continuities as a consequence of discontinuities of the control fanctions u (2,,2)on them
(see Eq.(A.14)) oratthe expense of discontinuities of the boundary controls p. We assume
that the characteristics remain fixed in the problem at hand, Then 8y, = 0 and§N=
0 and only the second relations in (3, 6) are valid, Since b, = ( on the characteristics,
the coefficients of the variations Adz / dY, in (3.5) equal zero and, therefore, we can

have Ats= A~ ons (3.11)
Equating the coefficient of variation Az to %ero, we obtain the condition
A3
3{Ar
—2) Gt (a2 +d— S8 4 B0 @
k=1

which is an equation for the prevalence of discontinuities [A] = A* — 4~ on the char-
acteristics, Equation (3, 12) was obtained by using formula (A, 15) for Eq. (2. 6).
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Let us obtain another Weierstrass — Erdmann condition, For this we consider the(rn—1)-
dimensjonal surface ' which determines the two characteristics y,(Y = const and
Yo® = const (see A, 18) which form four elementary domains abutting C. Equating

the coefﬁc1ent of the variation Az lc in (3. 5) to zero, we obtain
n 4

6§ cos (N, vg) b® cos (N,
ZZ('— 1)‘ 7\'{[ RORMD - };1) + (2) (2)( > V) =0 (3.13)
k=11=1 0 Rl s Rn RO Rl .. .Bﬁ?)

where by M(I=1,223, 4) we denote the value of A on surface C but belonging to
each of the four elementary domains, From formulas (A, 18) and (A, 19) follows

bV = — b, cos (N, ¥) = — cos (NV,, yp), RV = R®  (3.14)
Then condition (3, 13) becomes
— A +As— A, =0 on C

A similar condition was obtained in [2] for the two~dimensional case, It shows that the
magnitude of the discontinuity in the multiplier A does not change on passing through
the other characteristic,

4, Boundary conditions, To obtain the conditions on the boundary S of do-
main W we should use the quantities from expression (2, 2) which depend on the coor-
dinates of the boundaries, First of all we consider an elementary domain w having a
boundary in common with §

q
Fi] i)
6Is=g<vAzN N Ef%Avi)derg[bOm?;—oJr (4. 1)
s i=1 * s

F(MAZ]RR R +§2b"c°5(N Yx) R0R1 » ndC
C k==

We assume here that § is given by the equation y, (x,, ) = D; therefore, 3z /dN=
R,z / 0y, and ds = K K, ... K, dy. Terms for the variations 8y, and N are
absent in (4, 1) since the surfaces are assumed fixed and 8y, = 8N = (. Equatingthe
coefficients of variations Adz/ 0y,, Az and Av; to zero, on the boundary s of each

elementary domain we obtain the conditions
oh oh
Rozv—l—bo}v:Oa F(A’)—FRO»‘@;‘:O’ WZO? i.—_—fl,...,q (4-2)

1
which are the boundary conditions to Eq, (2. 6) and serve as well for the determination
of multiplier v and boundary controls v;.

Further, we obtain conditions on the ( n — 1 )-dimensional surfaces C lying on bound-
ary S; such a surface defines two characteristics which form three elementary domains
lying in W and abutting C. We number these elementary domains by indices 1, 2 and
3 so that the elementary domain with index 2 is located between the two characteris-
tics, Equations the coefficient of variation Az|c to zero, we obtain the condition

n

7»1——?»2 (1) 43
;[m cos (Ny', yr) — (4.3)
=1 0 1 -t
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Ao —
ng}ﬁgg} -_“"‘““"(2) b& €08 (Ng y y];)]

Using formulas {3, 14), from equality {4, 3) we finally obtain the condition
9\41 — 2}\«2 "‘}";\:3 == (0 on C (44)

where 4, is the value of the Lagrange multiplier A in the elementary domain with in-
dex 2,

Let us now find the conditions on the hypersurfaces ) for &, = T'. For thiswe write
down the terms from the first variation, depending on the coordinates of this hypersurface

.
_ (/9 3q> a, .
YA ”S(ﬁ S ) x—}-IS‘Zm;Az[pgdl + (4.5
P fa=f *

n

S[bcm—-—-;-ﬁ(;mz] . +§;><
bi cos (', yk)-ﬁ%i’%—-

n
The boundary being examined can be given by the equation y, = z, = 7T ; therefore,

we can also set y, = i, k£ = 1, ..., n. Taking what has been said into account,
we obtain 2 s .
Ro =Ry =by = 1; bf:=60=co’=~;9—~‘1~=-—;‘”—§=-—--—z0, (4.6)
Yo () Pok
k=1,... .0 dy=a,

Equating the coefficients of the variations Adz / 0z, and Az to zero, we have

3
A4 <E o, ,.....__+ agh + 0. 9% =0 4.7

Xo

Let us obtain more conditions on the ( B — 1 )-d1mens1ona1 surfaces C lying on Q
for x4 = 7. In this case surfaces  can be of two types: coinciding with the( n — 1 )~
dimensional surfaces T'y, T, ..., I, and not coinciding with even one of the I';,
i =0,1, ..., r. Fistof all we consider the surfaces I';, i=1, ..., r. A surface
I'; defines two families of characteristics Yol = const and yo® = const which
divide domain W adjoining &, = 7T into three elementary domains, We denote these
elementary domains by indices 1, 2 and 3, where the index 2 denotes the elementary
domain formed by the two characteristics, Then, equating the expression for the varia-
tion Az} r; to zero, we obtain a condition analogous to (4, 3) with the additional term
ay / 9z {p on the left-hand side, Using formulas (3, 14), we can transform this condition
to the form

}\.1'—2)\12—1"}-1 (1) -— .
S Zbk cos (NY, 26) + I] =0, i=1,....2 (4.8)

Analogously we can obtain condmons for the { » — 1 )-dimensional surfaces { lying
on  but not coinciding with the T';, i = 0, 1, . . ., r. The sole difference is the
the absence of the-term gy / 9z §pi in the expression similar to (4. 8)

)\41"-‘*27»2 +7\'3=OOHC (4-9)

We now consider the ( n — 1 )-dimensional surface Iy, being a boundary of domain
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Q or the intersection of the cylindrical hypersurface S and z, = 7. Surface I', de-
tines one characteristic lying in domain W and separating domain W adjacent to T,
into two elementary domains. We denote the quantities belonging to these elementary
domains by indices 1 and 2,respectively, Equating the expression for the variation

Az |p, to zero,we obtain the condition

[(xl — ) Zbk cos (N', z) - RoRy . . . R, ;9%%]1‘ -0 (4. 10)
k=1 alio

Conditions (4.7) and (4, 10) are terminal conditions for Eq. (2, 6), In the general case
these terminal conditions are discontinuous; therefore, the solution of Eq, (2, 6) has dis-
continuities on the characteristics generated by the ( » — 1 )-dimensional surfaces ly-
ing in domain Q for z, = T.

We obtain further conditions on the hypersurface € for 2y = #,. From the first va-
riation we write out the terms depending on the coordinates of this hypersurface

81,, = S [V1Dz (2o, L) + Valzy, (Lo, )] dz - S[b"}”A Z_;o T

o «

dy \ : AAzdC
F®) AZ] R, R, S’Zb"cos V' o) mm, R,
C k=1

Relations (4, 6) are valid on the hypersurface r, = ¢, ; therefore, equating the quan-
tities with Az,, and Az to zero, we obtain the conditions

_ A
Va+h =0, Vi G- T ek =0
which serve to determine the Lagrange multipliers v; (z) and v, (z). The inequalities

Ay —2h + A3 =0 on(C

may be valid on the ( n —{ )-dimensional surfaces; they show that the discontinuities
of the Lagrange multiplier, started when £ = T, can reach the boundaries x, = #,.

5, The Welerstrass necessary condition, Wwe pass to the proof of the
Weierstrass necessary conditions. For the case of two independent variables the proof
was obtained in {3, 4]. For n + 1 independent variable the proof proceeds analogous-
1y, and so is not presented here in detail, The Weierstrass necessary conditions include
a condition at the interior points of domain W and a condition at points on boundary.§.

Let us prove the Weierstrass condition at the interior points, Suppose that we havethe
solution u, », z minimizing functional (1.7). By B (z°, r,) we denote a closed ni-
dimensional sphere and by ¢ (2°, r,) we denote the surface of this sphere of radius r,
with its center at point z°. Let us consider the cylinder B (2°, ro) {J (0<C 2o — 2% <C
¢) lying in an arbitrary elementary domain w In this cylinder we construct a new con-
trol U satisfylng relations (2,2), Then the solution of Eqs (1.1) differs from the optimal in
the domain bounded by sphere B (2°, ry), To = o> and the characteristic conoid[6]
passing through the sphere's surface o (z°, ro) for z, > z°. Further, by implementing
transformations analogous to those in [3], we can obtain the Weierstrass necessary con-
dition

H (xg, z, 2z, U, A, p) — H (x, 2, 2, u, A, p) >0 (8. 1)
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which must be satisfied at each interior point of the elementary domains,

‘To prove the Weierstrass conditions for boundary controls we consider the solution g,
», z, minimizing functional J. We consider the intersection of the cylinder B (2°,
ro) |J (0 < 2y — 2,° < ¢) and the lateral hypersurface 5 belonging to the bound-
ary of elementary domain g, In this intersection we choose a control ¥V satisfying re-
lations {1, 5), Then the solution of Eq, (1, 1) differs from the optimal in a domain boun-
ded by the characteristic hypersurfaces passing through the ( n —1 )-dimensionalsurface
(B (2° ry), To = 2,°) [} §for 2, > x,°. Further,by implementing constructions
analogous to those in [4], we can obtain the second Weierstrass necessary condition

(S, zis, V, v, %) — h (S, izs, v, v, 0) >0 (5.2)
Here and in condition (5,1) w and » are optimal controls, while {J and V" are arbitra-
ry controls satisfying relations (1, 2) and (1, 5}; therefore, they imply the Weierstrass ne-
cessary conditions for a strong minimum,

Appendix, Letus consider the differential equation of hyperbolic type [7]

a
L() =i 2 “_Z a; 6:::3&: +Z mj(%,x u, 2) (A.1)

1,§=1
In the space R™' of variables z, 2;, . . ., 2, we take the mutually orthogonal family
of surfaces
Yo = Yo ('W"o, JL‘), Y= % (xi)r .'lf), e ¥rn T ln {xm x) (A. 2)
We introduce the curvilinear coordinates yg, ¥1» . . .» ¥n. Solving Egs. (A, 2) relativeto
Zgy Tyy . . .y Tn, We oOblain

Ty = Ty (ym ¥h Ty =2y (Yo: ¥)s + + 02 Tn = zn (Yo 1} {A.3)
By e, €, ..., &, we denote the orthonormalized frame connected with the coordinates
Zoy T1y -« . ¥ and by €', €)', . . ., €y" we denote the unit vectors of the moving frame
connected with the coordinates ¥s ¥1» . . . » ¥n [8], Then we obtain
ki 33:}. 24
vt gt m=[BET o wo
g

The matrix «, set by the elements ;7 = K 10z;/8y;, where ; is the row number and

| is the column number, corresponds to a unitary operator, therefore, a~! = af, where
aT denotes the transpose of matrix «. Using this important property of matrix «,wecan
obtain the following formulas

oz, ot dy; 33;,2” 1 oz R - e Fy; \2 (A.5)
dy, = R2 oz dz; — K2 9y, i 2

' ! 1==0 f
17 n
Rt L Vo % Ny 1 oy by (A.6)
i K RiRj oz, dz, R2 9z; dz; = Vi

=g =0
Li=0,1,...,n

where §;; is the Kronecker symbol,
The differential arc length ds in the new coordinates is
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n n dy.\2
dst = S (K dy, R = (__z)
2 (K, g:_;ﬁ 7 (A.7)
In what follows we shall also need the derivatives of the unit vectors ey’ with respect
to the variables ¥r. From the expressions for the derivatives
aep' , aep’ 6eq‘
égr eqzoa re=p, rakg, P#Qi”{g{;eq'—}- —a?;;ma‘p'::{}a P*q {A.8)

we can obtain the formulas
n

329,? 8?]{? 3§2
de&v bz, Ox; =0, rekp, r=kq, peg (A.9)

i, f=200

1 1 o Z ;O
oy e e p . - :
Poq K, oy, P K K2 -~ Ty 9, 9y, pFq

23

S Py Pq Wq

Poq FpRE o Dode; Oe; 0y 0 P +y
where 1/ ppy denotes the curvature of the line defined by the unit vector ¢/, Iyingon
the hypersurface ¥g (%o, 21, . . ., 25) = const {Dupin’s theorem {8]). Analogously, by
1/ ppp we denote the value in the last two formulas, resulting when ¢ =

Now let us pass to the new variables y,, ¥y, . . -» Un in Eq, (A, 1), and consider it on

the hypersurface ¥g (%, %1, + » » @) = const. Then we obtain the equation

2z 62“9’;, 3z
L{Z)-w §G 33; TEE bk ay ay& —§— @Z’g}‘z ay {A, }.G}

k11
02z
Z TR ”Z % By, +2dk By,
k, =1
in which we have denoted
3 ® P n
P By, YYp 9y, “Up 5 Py By,
P Bz, oy % Bz, oz, * mT % Gz, Bz;

i j’—'}‘ * 7 i, 3=t
"

Oy ) ‘
= ‘j 6.'361‘ 4 dp= ati ax‘i ’ k,l:i,.‘.,n, P"-—“O;i,-..,n
i, =1 FEH

In the new coordinates in Eq. (A. 10) the derivatives gz / ay,, 0% / 8y,> and &% [0y, 0y
are computed along the normal, while the remaining derivatives, along the tangentto the
surface y, {(zq, ) = const. We assume that function z is continuous together will ail its
derivatives when passing through the hypersurface yq (%, z) = const. Then the deriva~
tives 8% / dyody; and 9%z [ 8y;8y; remain continuous. For % { 8y we have

32 82 Sgt 20— B ‘
b"[auzﬁl**ﬂ* [ayi}:“gg;‘~ B9E = ft—7 (A.1D)

Consequently, [4%/ oy2l <=0 if [f] =0 and the hypersurface ¥o (2o, £) = const isnot
a solution of the differential equation
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n
3y, \2 &
o= (o) = Y, oy g =0 (A.12)
i, j=1
i.e. is not a characteristic of Eq. (A.1). When the right-hand side is continuous, the de~
rivative 8%/ dy,® can have finite or infinite discontinuities only on a characteristic,
We differentiate Eq. (A. 10) with respect to y, under the condition that Y (zo, ) ==
const is a characteristic. Then we obtain the equation

SWRTLINLUNE S/E SR e

which is called the equation for the prevalence of second-order discontinuities, If we as-
sume the continuity of function z and the discontinuity of the derivative 8z / dy, along
Yo (2o, %) = const, it is clear that ¥ (7o, *) == const is a characteristic, while the quan~
tity [z / dy,] = 0z+ [ dy, — 3z~ / 9y, satisfies the differential equation

S [ ]e (B a)[E]m e

If, however, function z is discontinuous, then for the magnitude of the discontinuity.fz]=
2+ — z~ we obtain the equation

n
8 ! a2y
2}ty 11+ (G ek dom
=1

Equations (A. 13) and (A. 14) show that the discontinuities [#%2/ dy,®l and [9z/ 3y,] can
arise both at the expense of boundary conditions as well at the expense of discontinui-
ties [8f / 8yl and [fl. The discontinuities [z} can arise only at the expense of discon-
tinuities [z] in the boundary or initial conditions,

Let us analyze Eq, (A, 12), Note first of all that its dimensionality can be loweredby
a change of variables

ZZZ) [z]=0 (A, 15)

!lo=xoiY(%,---axn):zoiY(z) (A,16)
In this case Eq, (A, 12) takes the form
SIS A
Z %j 9z, 9x; (A.17)
i, j=t

From (A. 16) it follows that if we solve Eq, (A, 12) with initial conditionson an (n —1)-
dimensional surface C, y, |, = D, we can obtain two solutions

WW=24+Y@=D, yP=2,—Y (@) =D (A, 18)

Therefore, we can assert that each { n — 1 )~dimensional surface € defines two char-
acteristics (A. 18) which separate the domain of variables z, and z into four parts,

We should note another important property of hypersurfaces (A, 18), Consider the nor-
mal N, to surface ¢ ,lying in the tangent hyperplane to the hypersurface vo'", and the
normal N, lying in the tangent hyperplane to the hypersurface yo‘*. Then from (A, 18)

follows
o8 (Ny, ;) = cos (Ny, — z;) = c0s [(Ny, ;) - ] = — cos (N, z;)
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