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Control problems are analyzed for systems described by second-order diffecen- 
tial equations of hyperbolic type,set in the form of a connected multidimenc 
sional Bolza problem of the calculus of variations. Necessary stationarity con- 
ditions have been obtained. It is shown that to the optimal solutions therecan 
correspond Lagrange multipliers which can have discontinuities on the charac- 
teristic hypersurfaces inside the domain. 

Optimization problems for two -dimensional hyperbolic equations wereexat 
mined earlier in [l- 41 l Discontinuities in the Lagrange multipliers were first 
obtained when solving variational problems of gas dynamics [5 3. 

1, Statement of the problem. Let us consider the partial differential equa- 
tion and the relations 

L (2) = s - g &‘dPI+&.& 
‘) &,aXj f @or 5, @, 2) GQ 

i, j=l i=O 

yts (X0,& u) = 0, i=1,...,tn<p (1.2) 

24 = @I (&Jr 4, . . .( uP trO, 5)), Qj 5 aij (2)~ ai = Uf (z) 

given in an ( n + 1 )-dimensional domain W = Q x [to, 2’1. Here 52 is a finite 
connected domain of variation of the variables 2 = (xi, . . .( 4, 2 h, 4 is a 
piecewise-smooth function of the variables s,and 2, subject to definition, u is the p- 
dimensional vector of piecewise-continuous controls. The matrix composed from the co- 
efficients ari is positive definite and symmetric at each point x e 51: . Prom these sta- 
tements it follows that Eq. (1.1) is of hyperbolic type in W . The initial and boundary 
conditions 

2 
I s.mtr =T w (47 (1.3) 

(1.4) 

qf (8, v) = 0, i = 1,. . . s ml<q; 2, = (27, (S), . . ., vq (8)) (1.5) 

are taken as specified. Here 8 is a cylindrical hypersurface formed by an ( n - 1)- 
dimensional surface ro moving along the coordinate x0, clz f i3N is the derivative 
with respect to the normal to S, v is a Q -dimensional vector of pi~ewise-continuous 
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controls specified S . The conditions 

xi (r, Z/f,, $I? . * ,, z/p,) = 0, i=f,...,mz<r+l (1.Q 

can be specified at the final instant xo = T , Here Ti are ( n - 1 )-dimensional sur- 

faces lying in the hypersurface Q, I‘, is the surface bounding &?, I’ are generalized 
coordinates yielding all lYr (i = 0, 1, . , ,, T). As an example we can cite the two cir- 
cumferences xl = rl cos 9, xs = rl sin cp and x1 = rs cos cp, xs = rs Sin cp, Zy- 
ing in the ( x1, xs )-plane+ Equalities (I,, 6) are to be u~~tood as the connections bp 
tween the v&es z/rr for one and the same values of coordinates I’. 

We pose the following optimization problem: among the piecewise-continuous con- 
trols u and u satisfying relations (1.2) and (1.5) and the piecewise-smooth functions 
z (x0, x) satisfying Eq. (1. I), initial conditions (1.3), boundary conditions (X,4), and also 
the end conditions (1.6), find those which minimize the functional 

1 = s fo(s,x,u,z)d;tb~x+Sg~(S,~,ZiS)~~-4- 
W 

(1.7) 

% [ 
cpo x, 2 (K 4, -& (T, x+x -I- 

5 
x0 (r, 2 \I’.¶, z [I$ - * * 12 lr,) dl‘ 

The coefficients aif a*d a, and the functions f, fo, yt, 91, ?P,, *iv g, g,, xi and x0 
are assumed to be continuous and to have continuous partial derivatives in all their argu- 
ments up to third order, inclusively, in the domain being eXamined.The function cpo is 
assumed continuous together with all its third partial derivatives in the subdomains of 
D delineated by the surfaces To, PI, r **., r. 

2, Ntctrtary st~tfon&ry condi~fo~s* The problem formulated is an (n + l)- 
dimensional Bolza problem of the calculus of variations. For it we can prove a necessary 
condition for the stationarity of the functional 

61 = 0 (2.1) 

in which &I is the first variation of the functional 

(2.2) 

where h (Q, x), pi (x0, x), Xi (s), V (A), Vi (x) and pi (f) are undetermined 
Lagrange multipliers. When computing the first variation i$_Z we assume that the whole 
domain W consists of a finite number of elementary domains wi bounded by a piece- 
wise-smooth hypersurface Si whose smooth parts Spi are separated by ( n - 1 )-dimen- 
sional surfaces Ci j. Some parts of the hypersurfaces St can coincide with the bonnda- 
ries of domain W: S and E;z (when x0 ;;= E. or .x0 = T), while some Cij ,will co- 
incide with surfaces ri, In order not to obscure the calculations with indices showing to 
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which specific elementary domains the quantities belong, we compute the first variation 
61 in some elementary domain w which has a boundary s and ($2 - 1 )-dimensional 
surfaces C. We assume that the elementary domain w is bounded by the hypersurfaces 

Yo = Yu (50, Z) = D (2.3) 

where D is some arbitrary constant. Naturally, in the general case the form of (2.3) is 
different from the smooth segments of boundary S. 

The first variation of functional I in domain w is 

61, = hL(6z)++pz +E ’ -$6u,]&ds +j[hL(z)+ H]GY,ds (2.4) 
i=l 

The first variations of the last three terms in (2.2), given on the boundaries of H; should 

be joined on the expression (2.4) (see below). We transform (2.4) by applying the follow- 

ing transformation to the terms AL (62) : 

Then we obtain 

SI, = 16” +f:$hi}dXodX + (2.5) 
w i=l 

QJj 
yy &. + haiUo& + fo6yo dS 

1 1 c i=o I- 
n 

M(h) = g& z a2 (aijh) 

1, j-1 
axi axj 

Here a,i are the direction cosines of the normal to hypersurface (2.3), determined in 
the Appendix. Besides those written out in( 2.5) there are no terms in the expression for 61, 

depending on the ikerior points of the elementary domain w. Therefore, following the 
formalism of the calculus of variations, it is necessary to set the conditions 

n/r (h) + dH / dz = 0 (2.6) 

dH / 3ui ‘= 0, i ~1,. . .y P (2.7) 

which must be satisfied at each interior point of each elementary domain. 

2, The Weierctroo - Erdmonn condition,. To obtain the Weierstrass- 

Erdmann conditions on the boundary hypersurfaces s of the elementary domains we ana- 
lyze the remainder terms in the first variation 61. To do this we pass in 61 to thenew 
curvilinear orthogonal coordinates 

Yo = Yo (% 3)7 Y, = Yl (to, x)7 . * *, Y, = Y, (20, z) (3.1) 
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a -= c R%it 
i)Xi r3xi q-’ i=O,f,...,n 

j=O 

Using (A. 4), (A. 5), (A. 7) and (A. 10) from the Appendix, we obtain 

We transform the second term in the integrand in (3.2) by using the formula 

a 
-i$- R,R,...Rn ( bkhdz > = &(RoRlb::.Rn)6Z + .,,lx^.Rn e 

Then the first variation (3.2) becomes 

(3.2) 

(3.3) 

where 1 / pOk are the quantities defined by formulas (A. 9) in the Appendix, C is the 

( n -1 )-dimensional surface on which the smoothness of the hypersurface s is disrup- 

ted and hr is the normal to surface C, lying in the tangent hyperplane to S. 

We 

AZ. and &i’z / ago are variations on surface s with due regard to its mobility 
away from C and Az IC is the variation with due regard to the mobility on surface 6’. 
Making use of equalities (3.4), we transform 61, to the form ,, 

61, = 1 {b&A ~i_P(hJAz+jA--Y+2h~~~ x 
n k=l (3.5) 
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in which 4% 1/ &Jo” is substituted from formula (A. 10) of the Appendix. 

We go on to e&b&h the Weierstrass- Erdmann conditions on the hypersurfaces s end 

on the ( n -4 ~d~rne~o~al’~rf~~ C. We shall examine s and I: Lying inside W; 
therefore, s serves as the boundary oftwa elementary domains,‘We denote the quantities 
in the elementary domain being examined by the index plus and‘in a boundary elementary 

domain by the index minus, We note as well that b, = 0 is the differential equation 

determining the characteristic surfaces of Eqs. (X.1) and (2.6). 

Let us obtain first of afl the Weientrass- Erdmann conditions on hypersurfaces s which 

are not characteristic ones. When passing through these hypersurfaces the quantities z 
and C%Z / 8y0 remain continuous, therefore 

A az+ 
b?io 

A az- 
“.-= -zc? 

+!” 
A a2 -&-’ AZ4 = AZ- = AZ, 

A~~/~y* and equating them to zero, we 
obtain bob+ - b,h- = 0, b. # 0, therefore 

A’ =3 h-on s (3.7) 

Singling out in (3.5) the terms depending on AZ, we find 

F (A+) == F (k-j (3.61 

The multiplier L is continuous on hypersurfaces s , therefore, the derivatives 3% / 88% 

are continuous and from equality (3.8) follows 

dh+ I aye = ah- I dy, on S (3.9) 

Equating the coefficients of variation 6y0 to zero and allowing for (3.7) and (3.91, we 

obtain If+ = H- on s (3.10E 

Let us now obtain the Weierstrass - Erdmann conditions on hypersurfaces s whichare 
characteristic, On characteristic hypersurfaces the derivative dz / dy, can have dis- 
continuities as a consequence of discontinnities of the control functions u (ror X) on them 
(see EQ (&X4) f or at the expense of discontinuities of the boundary controls V. We assume 

that the characteristics remain fixed in the problem at hand. Then 6y, = 0 and SM= 

0 and only the second relations in (3.6) are valid. Since b, = 0 on the characteristics, 
the coefficients of the variations A& J 4ya in (3.5) equal zero and, therefore, we can 

have h+ # A- on s (3.11) 

Equating the coefficient of variation AZ to zero, we obtain the condition 

which is an equation for the prevalence of discontinuities [hl = h+ - X- on thechar- 
acteristics, Equation (3.12) was obtained by using formula (A. 15) for Eq. (2.6). 
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Let us obtain another Weierstrass - Erdmann condition. For this we considerthe(n-_l)- 
dimensional surface C which determines the two characteristics y,,(l) = Const and 

Yo(‘) = Const,(see A. 18) which fosm four elementary domains abutting C. Equating 
the coefficient of the variation AZ Ic in (3.5) to zero, we obtain 

(3.13) 

whereby 3LI (I = 1, 2, 3, 4) we denote the value of 1 on surface c but belonging to 
each of the four elementary domains. From formulas (A. 18) and (A. 19) follows 

&O, = - b,c2), cos (N,, yk) = - cos (N,, yr), RJl) = RiP) (3.14) 

Then condition (3.13) becomes 

A similar condition was obtained in [2] for the two-dimensional case. It shows that the 

magnitude of the discontinuity in the multiplier a does not change on passing through 
the other characteristic. 

4. Boundary eonditlonr, To obtain the conditions on the boundary S of do- 
main W we should use the quantities from expression (2.2) which depend on the coor- 

dinates of the boundaries, First of all we consider an elementary domain w having a 
boundary in common with S 

61, = 
S( 

VAZN + ~Az+*~~CIDI)LLF+i[bohd~+ 
1 

s s 

F (h) AZ] RORIy . Rn + [ &r ~0s (N’, D) ‘A2 R,R, . Rn dC 
f! rc=l 

(4.1) 

We assume here that s is given by the equation y, (a~~, 5) = D ; therefore, & /dN= 

R&k I aye and ds = K,K, . . . K,dy. Terms for the variations 6y,, and 6N are 

absent in (4.1) since the surfaces are assumed fixed and 6y, = 6N = 0. Equatingthe 

coefficients of variations d&z / a&&,, AZ and Atli to zero, on the boundary s of each 
elementary domain we obtain the conditions 

Ro2v + bob = 0, F(h) + R, -g = 0, 2 = 0, 13Vi i=l,...,q (4.2) 

which are the boundary conditions to Eq. (2.6) and serve as well for the determination 
of multiplier v and boundary controls Vi. 

Further, we obtain conditions on the ( n - 1 )-dimensional surfaces C lying on bound- 

ary S; such a surface defines two characteristics which form three elementary domains 

lying in w and abutting C. We number these elementary domains by indices 1, 2 and 

3 so that the elementary domain with index 2 is located between the two characteris- 

tics. Equations the coefficient of variation AZ\C to zero, we obtain the condition 

It 

1--h, 
RF'RY) . . . R;) 

b? cos (IV;, ylr) - (4.3) 
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Using formulas (3,X4), from equality (4.3) we finally obtain the condition 

Al - 2hz + hs = 0 on C (4.4) 

where ks is the value of the Lagrange multiplier k in the elementary domain with in- 
dex 2, 

Let us now find the conditions on the hypersurfaces 5)1 for x0 = T. For this we write 
down the terms from the first variation, depending an the coordinate of this hypersurface 

The boundary being examined can be given by the equation y, = so = T : therefore, 
wecan alsoset yh- = 4, k i- 1, . . ., n. Taking what has been said into account, 

Equating the coefficients of the variations &?z / as, and AZ ta zero, we have 

Let us obtain more conditions on the ( n - I )-dimensional surfaces C lying on Q 
for x0 = T_ In this case surfaces C can be of two types: coinciding with the{ R - 2 )- 

* . dlmermonal surfaces I?*, r 3[‘, and not coinciding with even one of the Pi, 
i = 0, 1, . * .) r. First of fa;*~e‘~onsider the surfaces Pi, f=j, , . . 1 r. A surface 
ri defines two families of characteristics ,z#, Of = con& and y&“) =I con&, which 
divide domain W adjoining sco = y into three elementary domains. We denote these 
elementary domains by indices 1, 2 and 3, where the index 2 denotes the elementary 
domain formed by the two characteristtcs, Then, equating the expression for the varia- 
tion AZ /ri to zero, we obtain a condition anaIog~s to (4.3) with the additional term 
8~ / dz Iri on the left-hand side, Using formulas (3.&Q, we can transform this condition 
to the form 

I 

$---2hz-k 13 S 
Rpq . . . Rp c K31 

b(c” cos (A’:, ~a) + $7, = 0, i=l,...,z (4.3) 
1 i 

Anaiogousl~ we can obtain conditions for the ( n - 1 )-dimensional surfaces C lying 
on 52 but not coinciding with the I’g, i = 0, 1, . . ., r. The sole difference is the 
the absence of the-term dx / dz iFi in the expression similar to (4.8) 

Al -2% +A, = 0 on C (4.9) 

We now consider the ( n - 1 )-dimensional surface PO, being a boundary of domain 
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Q or the intersection of the cylindrical hypersurface S and x0 = 1’. Surface I‘, de- 
fines one characteristic lying in domain kV and separating domain W adjacent to r0 

into two elementary domains. We denote the quantities belonging to these elementary 
domains by indices 1 and 2, respectively. Equating the expression for the variation 

As In to zero, we obtain the condition 
n 

btcm(N',n)+ROR~...Rn+ = 
Im ro I 

0 (4.10) 

Conditions (4.7) and (4. IO) are terminal conditions for Eq. (2.6). In the general case 
these terminal conditions are discontinuous ; therefore, the solution of Eq. (2.6) has dis- 

continuities on the characteristics generated by the ( n - 1 )-dimensional surfaces ly- 
ing in domain 9 for x0 = T. 

We obtain further conditions on the hypersurface 52 for Z, = to. From the first va- 
riation we write out the terms depending on the coordinates of this hypersurface 

61,, = $ [vdz (to, 4 + wkm (to, 41 dx + \ [behA & + 
0 0 

F(h) AZ] dy hAzdC 
R,R, . . . R, h COS (N’t Yh-) R,R, . . . Rn 

Relations (4.6) are valid on the hypersurface x0 = to ; therefore, equating the quan- 

tities with Azx. and AZ to zero, we obtain the conditions 

va -+ h = 0, VI - ah dYo + aoh = 0 

which serve to determine the Lagrange multipliers vr (z) and vs (z). The inequalities 

3L1-2A2 +h,+O onC 

may be valid on the ( n -1 )-dimensional surfaces; they show that the discontinuities 

of the Lagrange multiplier, started when 5 = T, can reach the boundaries 2, = to. 

6. The Weierrtrrtr necotary condition. We pass to the proof of the 
Weierstrass necessary conditions. For the case of two independent variables the proof 

was obtained in [3, 41. For n + 1 independent variable the proof proceeds analogous- 
ly, and so is not presented here in detail. The Weierstrass necessary conditions include 

a condition at the interior points of domain W and a condition at points on b0undary.S. 
Let us prove the Weierstrass condition at the interior points. Suppose that we have the 

solution U, D, z minimizing functional (1.7). By B (2, r,,) we denote a closed n- 

dimensional sphere and by o (Y’, T,,) we denote the surface of this sphere of radius r0 

with its center at point 9. Let us consider the cylinder B (x0, T,,) U (0 < z. - xoo < 
e) lying in an arbitrary elementary domain w In this cylinder we construct a new con- 

trol U satisfying relations (2.2). Then the solution of Eq. (1.1) differs from the optimal in 
the domain bounded by sphere B (x0, r,,), xo = 50’ and the characteristic conoid [S] 

passing through the sphere’s surface 13 (a?, ro) for x0 > x0. Further, by implementing 
transformations analogous to those in [3], we can obtain the Weierstrass necessary con- 

dition 

H (~0, 2, 2, U, I*, P) - H (~0, 2, z, u, h, p) > 0 (5.1) 
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which must be satisfied at each interior point of the elementary domains. 
To prwe the Weierstrass conditions for boundary controls we consider the solution a, 

8, z, ~nimizing functional J . We consider the intersection of the cylinder B fY, 

TO) u (0 d $0 - zoo < e) and the lateral hypersurface 8 belonging to the bound- 
ary of elementary domain w, In this intersection we choose a control V satisfying re- 
lations (1.5). Then the solution of Eq. (1.1) differs from the optimal in a domain boun- 
ded by the characteristic hy~er~rfac~F~~~~~rough the ( n - 1 )-dimensionalsurface 

(B (x0, rQJr 5& = zoo) fl S for 5@ > .zoo. Further, by im~~emen~ng cons&u&ions 
analogous to those in [a]* we can obtain the second Weierstrass necessary condition 

h (8, z &% v, y, 4 - h (8, i&, D, Y, X) > 0 (5.2) 

Here and in condition (5, 1) u and 2t are optimal controls, while U and Y are arbitra- 
ry controls satisfying relations (k 2) and (I. 5) ; therefore, they imply the Weierstrass ne- 
cessary conditions for a strong mi~mum. 

A ppan df x. Let us consider the differential equation of hyperbolic type [7] 

fn the space B”+’ of variables to, zl* . * .I zx we take the rnutua~~y or~~ona~ family 
of surfaces 

We introduce the curvilinear coordinates ~0, I~, . . ., Y,. Solving Eqs. (A, 2) relative to 
~0% z,, . . ., s,, we obtain 

20 = 4 kOt tht % = zlb3~ d* = . .I % = %, &et !d (A.3 

By eo, @,, f . *, e, we denote the o~honormal~zed frame connected with the coordinates 
x0, Xl, * " ., xn and by eo’, el’, . . ., e,' we denote the unit vectors of the moving frame 
connected with the coordinates YIJ, YD . - . I Y, 183. Then we obtain 

The matrix CL, set by the elements %j == & ‘@XJ@i, where i is the row number and 
i is the column number, corresponds to a unitary operator, therefore, a-l = acT, where 
c? denott3s the transpcae of matrix a. Using this important property of matrix a, we can 
obtain the folXowing formulas 

where &gj is the Kronecker symbol. 
The differential arc length ds in the new coordinates is 
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Xn what follows we shall also need the derivatives of the unit vectors eP’ with respect 
to the variables YP From the expressions foor the derivatives 

ae,’ 
-e ‘=O, 
&, p 

?-#$I, rff2, 
de,’ 

P#G--- aY P#;rl (A.81 
4 

we can obtain the forrn~~a~ 

(A. 9) 

where 1 f ppp denotes the curvature of the line defined by the unit vector ep’, lying an 
the hypersurface ,?I, (% x1, . . ., xnn) = canst (TXlpin’s theorem @I]). Analogously* by 
1 / pPP we denote the value in the last two tormulas,resulting when q = p. 

Now let us pass to the new variables yO, ulr . . ,) &I in F.Q, (A. I), and consider it on 
the hypersurface YO (Q, % , , t xnf = con& Then we obtain the equation 

in which we have denoted 

fw the new coor~n~t~~ in Eq. (A. 10) the derivatives & j gYor a% ,l agl;a and 3% ~~~~~~~ 
are computed along the normal, while the remaining derivatives~ along the tangent to tbhs 
surface ye (z+ 24 = oonst. We assume that &n&ion z is continuous together wilz all its 
derivatives when passing through the hypersurface go (x8$ 4 = const. Then the deriva- 
tives & j ~~*~~~ and 3% / &yi&j remain continuous. For 3% ! &&z we have 

Consequently, [aa, / &~,a] + 0 if [f] f 0 and the hypersurface la (2~~ ~1 = const isnat 
a solution of the differential equation 
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(A.12) 

i. e. is not a characteristic of Eq. (A. 1). When the right-hand side is continuous, the de- 
rivative &z I a~/,* can have finite or infinite discontinuities only on a characteristic, 

We differentiate Eq, (A. 10) with respect to y0 under the condition that YIJ (zo, x) = 
con& is a characteristic. Then we obtain the equation 

which is called the equation for the prevalence of second-order discontinuities. If we as- 
sume the continuity of function ,Z and the discontinuity of the derivative az / &/a along 
yo (go, 5) = con&, it is clear that Y (50, r) = const is a characteristic, while the quan- 

tity [az / ay,1 = az+ I ay, - a~- / a~, satisfies the differential equation 

2~lk~[~]+(~--o+do)[~]=Iil (A. 14) 
k=l 

If, however, function z is discontinuous, then for the magnitude of the di.scontinuiQ[n]= 
z+ - z- we obtain the equation 

(A. 15) 

Equations (A. 13) and (A. 14) show that the discontinuities Iaaz I ay$] and [air I ay,l can 
arise both at the expense of boundary conditions as well at the expense of ~scon~nui- 
ties [@ I aye] and [f]. The discontinuities [zj can arise only at the expense of discon- 
tinuities izl in the boundary or initial conditions. 

Let us analyze Eq. (A. 12). Note first of all that its dimensionality can be loweredby 
a change of variables 

yo = 50 f Y ($1, * . ., s,) = 30 L- Y (a!) 

In this case Eq. (A. 12) takes the form 
S 

c 

aY aY 
aijF% = 1 

i, j=l 

(A, 16) 

(A. 17) 

From (A. 16) it follows that if we solve Eq. (A. 12) with initial conditions on an (12 -l)- 
dimensional surface C, y. lc = D, we can obtain two solutions 

Ye(l) =zo+Y(r)=D, yo(s)=IO-Y(a?)=I (A. 18) 

Therefore, we can assert that each ( n - 1 )-dimensional surface C defines two char- 
acteristics (A. 18) which separate the domain of variables z. and 5 into four parts. 

We should note another important property of hypersurfaces (A. 18). Consider the nor- 
mal iv1 to surface C , lying in the tangent hyperplane to the hypersurface ~0 ‘I), and the 
normal N, lying in the tangent hyperplane to the hypersurface yo@j, Then from (A. 18) 
follows 

‘OS (N,, ‘i) = ‘OS (N,, - xi) = ‘OS [(N,, xi) _t n] = - CO9 (N,, 5i) 
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